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Summary 

The national forest inventory (NFI) of the Ukraine started in 2019 and is planned as a strictly 

field based inventory. The use of remote sensing imagery was only meant for pre-clarifica-

tion purposes, to determine, if the planned inventory plots are located within a forest or 

not. 

However, as a result of the war in Ukraine, the ongoing national forest inventory cannot be 

conducted as planned, however. Aside from other impeding factors, such as the reduced 

staff or the unstable power grid, vast parts of the forest are inaccessible due to life threat-

ening risks for the field teams caused by occupation, mines, or ongoing armed conflicts. 

Thus, several planned inventory plots cannot be visited by field teams. It was therefore 

decided that remote sensing methods should be applied as an auxiliary method to the 

terrestrial campaign, to estimate forest structural variables, specifically for the inaccessible 

forest areas, but also to obtain a more detailed estimations of the spatial distribution of the 

variables for the entire country of Ukraine. 

The aim of this study is (i) to provide a decision basis on which remote sensing analysis 

method to choose, (ii) suggest necessary steps for reference data acquisition and prepa-

ration, and (iii) propose an implementation plan of the steps needed to estimate the forest 

structural variables using remote sensing data. Following these main ideas, the document 

is structured into three parts, subsequently depending on the outcome of the previous one. 

The outcome of each part will be produced in close correspondence with and in depend-

ence on the agreement of the Ukrainian project partners: 

Part I: General concept outline 

 Overview of methods and data requirements for applying remote sensing data in 

a forest inventory context 

 Recommendation of appropriate method and remote sensing data 

 Definition of reference data requirements 

Part II: Acquisition, description, and analysis of available reference and 

ancillary data 

 Description of available reference and ancillary data 

 Concept for reference data preparation 

Part III: Implementation plan 
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Part I: General concept outline 

Using remote sensing data analysis for forest inventory applications can benefit the process 

in multiple ways. Here, the focus is on predicting forest structure variables for inaccessible 

forest areas. The original plans for the field based NFI will not be substantially altered. The 

results from the remote sensing analysis aims to create additional valuable information for 

the NFI, such as wall-to-wall mapping of the forest structure variables, with an increased 

spatial distribution, for the entire country. This is especially relevant for areas inaccessible 

to the inventory teams.  

2.1. Introduction 

Remote sensing can provide several benefits for forest inventory applications where forests 

can be large and difficult to access. One of the key benefits is that it allows for the rapid 

and cost-effective acquisition of data over large areas. Remote sensing can also provide 

high-resolution data that can be used to accurately map and classify different types of 

vegetation. This can be helpful for understanding the structure and composition of a forest, 

for monitoring changes like forest cover, vitality, and health over time. Additionally, remote 

sensing can be useful for detecting and mitigating the impacts of natural hazards and 

other threats. 

There are several benefits to using remote sensing to support field surveys in forest invento-

ries. One of the key benefits is that remote sensing can provide a broad overview of the 

area being studied, which can be useful for identifying areas that may be worth further 

investigating in the field. If a regular grid of sampling plots is used, remote sensing can help 

determine which of the plots are located within the forest and can help assess the plot’s 

accessibility. Remote sensing data can also provide detailed information on the structure 

and composition of the forest, which can be used to guide field surveys and to ensure that 

data is collected in a consistent and systematic manner. This can help to improve the ac-

curacy and precision of the inventory. 

Remote sensing data from satellites can be used to distinguish different types of vegetation 

within a forest based on their unique spectral signatures, which are light wavelengths that 

are reflected or emitted by different types of vegetation. Different types of vegetation 

have different spectral characteristics due to differences in their chemical composition, 

structure, and photosynthetic pigments which arise due to their varying foliage, health, 

vitality etc. In addition to these spectral characteristics, satellite data can also be used to 

identify other characteristics of vegetation, such as canopy structure, canopy cover, tree 

height, tree density, and species composition. The specific variables that can be estimated 

using remote sensing will depend on the characteristics of the forest being studied and the 

type & resolution of the satellite data available.  
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The accuracy of forest structure data estimated using remote sensing can vary depending 

on several factors, including the type of remote sensing technology used, the resolution of 

the data, and the type of forest being studied. In general, remote sensing can provide 

highly accurate data on forest structure when Very High Resolution (VHR) & High Resolution 

(HR) imagery is used and when the forest being studied has relatively homogenous char-

acteristics. However, the accuracy of remote sensing data can decrease when dealing 

with forests that have complex structures or when the resolution of the data is not sufficient. 

Additionally, the accuracy of remote sensing data can be affected by factors such as 

area coverage, cloud cover and rapid changes in the forest over time.  

2.2. Data requirements and methodological options for RS based 

NFI support 

2.2.1. Remote sensing platforms and sensors 

For the remote sensing surveys of forests, three main platforms are distinguished: Uncrewed 

aerial vehicles (UAV), aircrafts and satellites (compare Figure 1). These platforms can be 

equipped with various sensors which acquire data with different spectral and temporal 

characteristics. 

 

Figure 1 Comparison of flight height (H), image area coverage (footprint) (C) and spatial 

resolution (R; both ground sampling distance (GSD) for multispectral images and point 

density for LiDAR point clouds) of remote sensing platforms UAV, Aircraft and Satellite 

Sensors that record and measure electromagnetic energy fall within two groups: passive 

sensors and active sensors. Passive sensors such as cameras, multispectral or thermal scan-

ners, mainly rely on the sun as an external source of energy and are hence, dependent 

on the sun’s illumination for data acquisition. Active sensors, such as light detection and 

ranging (LiDAR) or radio detection and ranging (RADAR), provide their own energy and 

are hence, not dependent on the sun’s illumination for data acquisition. 
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Deployed passive sensors in the context of forest inventories are usually multispectral sen-

sors, recording multiple spectral bands (wavelengths of electromagnetic energy) in the 

range of visible light and infrared. Multispectral sensors can measure up to 15 spectral 

bands (e.g. compare Worldsview-2 in Figure 2) and are distinguished from hyperspectral 

sensors, which can provide more than 100 bands (e.g. compare EO-1 Hyperion in Figure 

2). 

 

 

Figure 2 Spectral reflectance characteristics (below) in the visible (0.38 – 0.75 µm), near- 

(0.75 - 1.4 µm), and short wave infrared (1.4 - 3 µm) range for three common land cover 

types shown together with locations of spectral bands of common sensors (above), some 

of which have additional bands extending further into the infrared range not depicted here 

(Richards, 2013, S. 11) 

Of the active sensors, LiDAR which stands for Light Detection and Ranging, is mainly used 

to derive forest metrics. As an active sensor system, a LiDAR system generates its own en-

ergy (light) or laser, which is emitted in pulses (burst of light energy) and records the re-

turned signals. The time it takes the signal to return to the sensor is used to calculate the 

distance travelled. The LiDAR system uses the speed of light to calculate the distance be-

tween the top of the object and the platform used.  Based on the orientation of the plat-

form and the distance the light travels, a 3D point cloud is generated, with each point 

representing a strength of the returned signal. A distinguishing factor between LiDAR sys-

tems is the way the return signal is recorded (compare Figure 3). Discrete Return LiDAR 

systems identify peaks in the returned signal and record these points as returns. The number 

of returns recorded per pulse usually lies between 1 and 4, mainly recording the top of the 

canopy and the ground. Full Waveform LiDAR systems capture the distribution of light 
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energy returned to the sensor and display them as waveforms (figure 3). While the latter 

requires complex processing, the information gained in comparison to discrete return sys-

tems increases the possibility of tree and shrubs detection in lower forest layers and im-

proves the possibility of tree species classification. 

 

 

Figure 3 Returned discrete signal (red dots) and waveform of an emitted pulse from a LiDAR 

system (Lindberg & Holmgren, 2017) 

The decision on the platform used and sensor combination depends on the required spa-

tial and temporal resolution and the cost of data acquisition. While UAV or aircrafts 

equipped with hyperspectral or LiDAR sensors facilitate the analysis of the data on a single 

tree level, using these in a NFI context for a wall-to-wall mapping of the country will lead 

to relatively high costs and acquisition time compared to satellite imagery. Moreover, con-

sidering the ongoing war in Ukraine, collecting data over the conflict areas using UAV or 

aircrafts is not recommended due to the risk of the platforms being attacked leading to a 

loss of equipment or even causing harm to the pilots. Instead of covering the entire coun-

try, UAV- or aircraft-based data could also be collected using a sampling-based ap-

proach, like a field campaign. As this study’s main purpose is to offer suggestions on how 

to derive estimates for the now inaccessible forest areas using remote sensing data, and 

without substantially altering the original NFI concept, the following chapters will thus focus 

on the use of satellite imagery. 

Other active sensors that are often used for remote sensing are Synthetic Aperture Radar 

(SAR) sensors that use microwaves to create 2D images of the Earth. SAR sensors on board 

satellites provide high resolution, daylight and weather independent data that can be 

used for a wide range of applications. The weather and daylight independence makes 

SAR sensors the most suited for monitoring, hazard mapping and other applications that 

require images independent of cloud cover. Until now, built on the principal of a RADAR 

(Range Detection and Ranging), it involves sending a signal of high power to a target and 

measuring the strength (amplitude) and time (phase) of the returned echoes from the 
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Earth’s surface. The transmitted signal interacts with the Earth surface and only a portion 

of it is backscattered back to the sensor. SAR sensors use the forward motion of their plat-

forms (aircrafts or satellites) to synthesize larger apertures thereby being able to provide 

higher resolution images. Unlike optical images, visualizing raw SAR data does not give any 

useful information about the imaged scene and signal processing steps are required to 

produce a 2D grayscale image (Moreira, 2013). While SAR amplitude can provide infor-

mation about the composition and characteristics of the objects in the area imaged, SAR 

phase can provide information about ground and terrain deformation. SAR sensors oper-

ate in the microwave range of the electromagnetic spectrum of light between 0.3 Ghz 

and 40 Ghz and are hence, not hindered by clouds and other atmospheric phenomena. 

Commonly used SAR wavelengths are X band (3.1 cm), C band (5.6 cm), L band (23 cm) 

and S band (8-15 cm).  

SAR data are usually amplitude data and phase data. SAR amplitude data consist of SAR 

backscattering information displayed in 2D images where the SAR backscatter from ob-

jects on the Earth’s surface depend on the different geometric properties and chemical 

properties of those objects. In the context of forest applications, SAR backscatter from 

vegetation will depend on vegetation content, soil moisture, foliage, and dielectric prop-

erties of the targets. The amount the transmitted signals will penetrate forest canopies will 

depend on the wavelength used. For forest inventory applications, SAR amplitude has 

proven to be beneficial as it can provide information about Above Ground Biomass and 

for monitoring vegetation. SAR sensors are also very sensitive to water and hence can be 

effective for soil moisture analysis. SAR polarimetry is also commonly used for land cover 

application which requires an extensive understanding of the SAR signal and how it inter-

acts with the objects in the image scene and requires complicated processing steps. The 

use of SAR for forest and biomass applications has been reported extensively in the NASA 

SAR handbook for forest monitoring and Biomass (SARHB_FullRes.pdf (servirglobal.net)) 

 

2.2.2. Satellite data requirements 

Remote sensing using multispectral & SAR satellites provide a cost and time effective alter-

native to LiDAR data and field surveys especially bearing in mind the current instability in 

Ukraine. Satellite data can be acquired by passive and active sensors i.e. sensors that 

measure the amount of sun’s radiation reflected back to them, or those that generate 

their own power and measure the strength of the return signals. Since the launch of ERS-1 

in 1972 which marked the beginning of the Earth Observation era, many satellites, both 

active and passive have been launched for a variety of applications including forest and 

land cover monitoring. While passive sensors on board satellites are dependent on daylight 

conditions and can be hindered by the presence of clouds, haze and other weather phe-

nomena, active sensors such as RADAR, LiDAR and SAR work independent of weather and 

daylight conditions.   
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Multispectral Satellites 

For multispectral satellite data to be useful for forest inventory applications, it should have 

high spectral, temporal, and spatial resolutions and must not be hindered by weather con-

ditions and clouds.  

 Spectral resolution refers to the number of different wavelengths of light that a sat-

ellite sensor can detect and measure. For forest monitoring, it is important to be 

able to measure light reflected in a wide range of wavelengths (spectral bands) 

so that a wide range of features within the forest, such as different types of vege-

tation, bare soil, and water bodies can be detected. 

 Temporal resolution refers to the how often the satellite acquires data. For forest 

inventory, to estimate forest structural data, it is important to have a high temporal 

resolution so that imagery can be acquired for a point in time as close as possible 

to the date of the reference data. Additionally, through the analysis of time series 

(many images acquired over a large time period), tree species (compositions) in 

forests are more easily distinguished. 

 Spatial resolution refers to the size of the smallest feature/object on the ground 

(pixel) that a satellite can detect. For forest monitoring, it is important to have a 

high spatial resolution so that small features within the forest, such as individual 

trees, can be accurately detected and monitored. 

 In addition to these technical requirements, satellite data for forest monitoring 

should also be collected under consistent and stable atmospheric conditions to 

ensure the accuracy and reliability of the data. Data collected with large amount 

of cloud cover or other atmospheric phenomena are not suitable for such a study. 

As shown by Astola, Häme, Sirro, Molinier, & Kilpi (2019) in the comparison of Sentinel-2 

and Landsat 8 imagery for forest variable prediction, freely available imagery can al-

ready meet the above-mentioned requirements. Sentinel-2 and Landsat 8 (or the re-

cently launched Landsat 9) are two satellites with multispectral sensors on board and 

hence, the next section focuses only on multispectral satellite imagery.  

SAR satellites 

There are currently many SAR satellites that provide open access to their data.  For 

forest inventory applications, two main groups of characteristics must be considered: 

sensor and target characteristics. Sensor characteristics include SAR wavelength, SAR 

polarization. Incidence angle of the SAR signal and the orbit direction of the satellite. 

The target characteristics are forest biomass and structural complexity.  

 SAR Wavelength: The wavelength of the sensor determines the penetration depth 

of the transmitted signal into the vegetation or ground layer of the Earth. The 

longer the wavelength, the deeper the penetration can be. In forest applications, 
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o X-band (3.1 cm) SAR sensors will mainly measure the backscatter returned 

from the top layer of the canopy,  

o C band (5.6 cm) SAR sensors will measure the backscatter from the top 

and other branches and stems of the trees 

o L-Band (23 cm) SAR sensors will be able to measure the backscatter from 

the upper vegetation through to the ground surface 

 

 

Figure 4 Pentration of SAR signals according to the SAR wavelength used (modified from 

NASA SAR handbook) 

 SAR polarization: SAR data can collect signals in different polarizations by collecting 

and controlling the polarization during both transmission and reception. Polarization 

refers to the orientation of the plane of the transmitted SAR signal, Horizontal (H) and 

vertical (V) polarizations being the most used. The orientation of the transmitted SAR 

signal may get altered due to interactions with different elements on the ground such 

as vegetation, water, soil etc.. Hence, the ability of the SAR sensor to measure this 

change in polarization can be useful when trying to understand tree species, crop 

type, vegetation vitality etc. Sensors like Sentinel-1 are only capable of sending signals 

in one polarization, either H or V and are able to receive signals in both directions 

thereby providing dual polarized images in VV (Vertical sent, Vertical received) and 

VH (Vertical sent, Horizontal received) or HH and HV. Other SAR satellites like TerraSAR-

X or ALOS-PALSAR can send in both polarizations and receiving both thereby providing 

quad polarized data in HH, VV, HV and VH. By a number of complex decomposition 

methods, information about tree, crop species may be extracted using a technique 

called SAR polarimetry. 

 SAR incidence angle: The incidence angle is the angle between the SAR sensor and 

the going and the surface normal of the illuminated Earth’s surface. SAR backscatter 

is strongly influenced by this angle and this angle determines scattering in the crown 

layers, trunks and interactions with the ground. Objects tilted towards the sensor tend 

to return a higher backscatter than those tilted away from the sensor. 

 SAR orbit: SAR sensors are side looking and not Nadir pointing (like optical sensors). The 

look direction of the SAR refers to the direction the SAR antenna points to when emit-

ting and receiving. Most commonly, SAR sensors tend to be right looking sensors which 

means that the part of the Earth being imaged by them will be to their right. When SAR 

satellites are in Ascending orbits, they are flying from the south pole to the north pole 
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and imaging areas to their right, whereas the same area may be imaged when the 

satellite is in its descending orbit (north pole to the south. The objects tilted to the sensor 

during ascending acquisitions may return a stronger backscatter than during descend-

ing acquisitions. 

2.2.3. Feature requirements 

Most methods for estimating forest structure variables from remote sensing imagery rely on 

machine learning techniques. In machine learning, a property of the object, which is being 

analyzed, in our case the remote sensing data, is called a feature. There are several fea-

tures that can be extracted from satellite imagery for the classification of forest types and 

forest structural variables. These features can be used to represent the spectral, spatial, 

and temporal characteristics of the trees, and can be used to train machine learning al-

gorithms to distinguish between the spectral and spatial characteristics. The features rele-

vant for forest related remote sensing data analysis can be grouped into three categories: 

 Spectral features: These are features that represent the spectral characteristics of 

the trees, such as the reflectance of light at different wavelengths, the normalized 

difference vegetation index (NDVI), and the greenness index. 

 Spatial features: These are features that represent the spatial characteristics of the 

trees, such as the size, shape, and texture of the trees, as well as the arrangement 

of the trees within the forest. 

 Temporal features: These are features that represent the temporal characteristics 

of the trees, such as the phenological stages of the trees (e.g., leaf emergence, 

leaf senescence) and the seasonal changes in the trees. 

In addition to these features derived from the main satellite imagery, other features, such 

as topographic features (e.g., elevation, slope), meteorological features (e.g., tempera-

ture, humidity), and land use features (e.g., soil type, land cover) can also be extracted 

from additional satellite data and used to improve the accuracy of the analysis. 

2.2.4. Methods for remote sensing estimation of forest structure variables 

Apply published methods 

The estimation of forest structure variables from remote sensing data is an actively re-

searched field with new or updated methods being published regularly. Especially ad-

vances in the field of machine learning, specifically artificial neural networks, and new 

sources of satellite imagery are the main driving forces behind the innovative develop-

ments in this field. 

Many of the studies yield very promising results. However, the studies are often confined to 

specific study areas, and therefore specific forest types, and are not tested for more gen-

eral applications. Any method adopted from publications needs to be checked for its 
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applicability and modified to fit the requirements specific to the forest types in Ukraine. 

Ideally, methods should be selected, which were developed specifically for Ukraine for-

ests, such as published by Myroniuk, Bell, Gregory, Vasylyshyn, & Bilous (2022). 

While describing the developed methods, many published papers do not supply access 

to the code used. To apply the described methods, one would need to reverse engineer 

them. This can be achieved either by writing the described code in a local development 

environment, usually based on R or Python, involves a lot of time and effort and the success 

of the reverse engineering depends on how well the methodology was described in the 

publication. Processing the data for an entire country comes at a high local processing 

and storage cost, which might limit this option, making a cloud-based solution, such as 

using the Google Earth Engine, preferable. 

To reduce the amount of time and cost spent on writing code when reproducing the meth-

ods described in the publications, they can also be implemented using no-code services 

for remote sensing data analysis, such as Earth Blox. However, these services are limited in 

the available function blocks and thus might not bring the necessary functionality to re-

produce complex workflows, such as deep neural networks with very specific hidden lay-

ers. 

Use existing services 

As often is the case in research, the main focus is on developing and testing novel methods 

rather than producing industry ready tools, which is why only few ready-made tools for the 

estimation of forest structural variables from remote sensing data are available. One of 

which, proposed as the most adequate approach and described in more detail below, is 

Forest Flux (https://cordis.europa.eu/project/id/821860). The service resulted from an EU 

funded project, to which unique contributed and was able to gather experience in multi-

ple pilot study areas. It is also under further development as part of the Forest Carbon 

Monitoring project. 

Forest Flux provides cloud-based services for the prediction of forest structural variables 

and carbon assimilation via freely available high-resolution (HR) Earth Observation (EO) 

data (Häme, et al., 2021). Outputs are generated in the form of digital maps and statistical 

information. Copernicus satellite images provided with no cost by the European Space 

Agency (ESA) are the main source for EO data. Forest Flux follows a holistic approach im-

plemented in a single processing chain. The Forest Flux services are implemented on the 

Forestry Thematic Exploitation Platform (F-TEP) and is fully functional since 2022 (Häme, et 

al., 2022). F-TEP offers a range of services to support commercial, governmental and re-

search institutions in the forestry sector. Via F-TEP, versatile processing approaches are ac-

cessible online to generate forest information products for forest management and moni-

toring. 

Chapter 2.3 describes the processing steps for Forest Flux. The steps are general enough to 

be followed if the platform is decided against. 
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2.3. Recommended processes 

In the following sections the recommended processing chain for estimating forest struc-

tural variables via RS is described and the relevant subsystems to be modified are outlined 

(based on the recommendation to utilize and adapt the Forest Flux services available on 

the F-TEP platform). Hereafter, we focus only on using multispectral data from Sentinel-2 

and VHR data from other missions such as PlanetScope. For a more detailed description of 

the approaches, underlying algorithms, and their application, please refer to the final re-

port of Forest Flux (Häme, et al., 2022). 

2.3.1. Overall processing chain 

A schematic overview of the entire processing chain to be implemented is shown in Figure 

5. The main processing chain constitutes of three subsystems: 

1. EO data pre-processing (HR and very high resolution (VHR) RS-images),  

2. Extraction/computation of forest structural variables, and  

3. Compilation of the expected end products.  

To derive the desired map products (output), target area specific input and reference 

data are required. 

 

Figure 5 Schematic overview of the processing chain of the applied Forest Flux services 

(Häme, et al., 2022) 

In the “EO data pre-processing” subsystem EO data sets (Sentinel-2) are processed to the 

level required by the next processing subsystem. The default pixel size is 10 m, which is the 

highest spatial resolution of Sentinel-2 data. Ancillary datasets will also be used here. Target 

specific input data are required to be input into this subsystem. The subsystem “Computa-

tion of forest structural variables” produces the forest inventory product layers. After this 

subsystem has completed processing, the product layers are ready for final product com-

pilation. 

This subsystem also includes “reference data acquisition and preparation“ from VHR satel-

lite images, aerial images or open VVHR-image data like Google Maps, Bing Maps etc..  
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The third subsystem “Compilation of end products” compiles the product layers in the final 

formats for delivery. It includes styling, formatting or color coding based on the defined 

look up tables and format conversions according to the national requirements. 

The main expected end products (output maps) for the RS based Forest Inventory for the 

Ukraine have been derived from the list of results defined for the terrestrial NFI. The ex-

pected products are listed in Table 1 along with possible sources of reference data ac-

cording to level of availability. Reference data can be obtained on three levels:  

• Level 1: Estimates of attributes based on visual interpretation of very high resolution 

(VHR) imagery (Aerial images, Google Earth or Bing Maps images). The Level 1 will al-

ways be necessary to improve the quality of results or to verify and delineate reference 

data from Level 2 and Level 3 sources. 

• Level 2: Reference polygons containing ground and stand based forest structural at-

tributes from recent (< 5 years) Forest Management Plan (FMP) data. 

• Level 3: List of ground attributes sampled in the field from NFI plots (DCPs) Administra-

tive data (roads, rivers)  
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Table 1 Overview of the expected end products and sources of reference data to train 

the RS analysis model 

Expected end products  

- resulting map layers 

Targeted use of reference data 

Level 1: Attrib-

utes sampled 

by visual inter-

pretation of 

VHR data 

Level 2: Attributes 

sampled from actual 

(< 5 years old) FMP 

data + VHR images 

Level 3: List of 

ground attributes 

necessary for RS 

mapping  

(ground truthing) 

Forest mask (forest cover map 

at 10 m spatial resolution) 
Forest / non-for-

est 
Forest /non-forest Forest /non-forest 

Forest Types Forest Types Forest Type & Tree 

species composition 

from stand level im-

proved by analyzing 

VHR images 

Forest Type & For-

est species com-

position on plot 

level 

Tree species distributions  

(raster maps of tree species 

presence and distribution at 

10 m spatial resolution) 

Partly aplicable 

– dominant 

species 

Tree species % from 

stand level data im-

proved by analyzing 

VHR images 

Forest tree species 

% on plot level 

Mean tree height [m] 

 

NA Mean tree height 

from stand level data 

improved by analyz-

ing VHR images 

Mean tree height 

on plot level 

Mean DBH [cm] NA See above See above 

Density – number of trees [N/ha] NA See above See above 

Basal area [m²/ha] NA See above See above 

Mean age [years] NA See above See above 

Mean growing stock [m³/ha] 

 

NA Growing stock /ha 

from stand level im-

proved by analyzing 

VHR images 

Growing stock /ha 

on plot level 

Increment / ha  

 
NA Increment /ha from 

stand level data from 

stand level improved 

by analyzing VHR im-

ages 

Increment /ha on 

plot level 

Above and below ground bio-

mass / ha  

 

NA Above and below 

ground biomass /ha 

from stand level data 

from stand level im-

proved by analyzing 

VHR images 

Above and below 

ground bio-

mass/ha on plot 

level 

Carbon stock [t/ha] NA See above See above 
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2.3.2. Input data 

2.3.2.1. High resolution satellite imagery – Sentinel-2 

Input data consist of HR EO data and ancillary data. The main recommended data source 

of EO are Copernicus Sentinel-2 multispectral images which cover 13 spectral bands. Four 

of these bands have a 10 m spatial resolution (blue, green, red and near infrared), six 

bands have a 20 m resolution, and three bands have a 60 m spatial resolution. The 10 m 

bands serve as the primary data source, but other bands can be applied as needed. In 

addition to the 10 m bands, the main 20 m bands to be used are the short-wave infrared 

(SWIR) bands and the red edge band 5 (Table 2). Sentinel-2 data are delivered as 100 km 

by 100 km tiles and are available at two processing levels: Level-1C orthoimages and 

Level-2A atmospherically corrected orthoimages. This means that Level-1C images con-

tain top of atmosphere (TOA) reflectance values and Level-2A data bottom of atmos-

phere (BOA) reflectance values. Sentinel-2 Level-2A data will constitute the main data 

source. From the scene classification maps, cloud and cloud shadow mask are compiled 

which will be based on data with a high level of processing. Table 2 shows the applicable 

Sentinel-2A spectral bands with their respective spatial resolution. 

Table 2 Applicable Sentinel-2A bands. 

Band Central wavelength 
(µm) 

Spatial resolution 
(m) 

B2 Blue  0.492 10 

B3 Green 0.560 10 

B4 Red 0.665 10 

B5 Vegetation Red Edge 0.704 20 

B6 Vegetation Red Edge 0.741 20 

B7 Vegetation Red Edge 0.783 20 

B8 NIR 0.833 10 

B8A Vegetation Red Edge 0.865 20 

B11 SWIR 1.614 20 

B12 SWIR 2.202 20 

2.3.2.2. Ancillary data 

Ancillary data includes all other RS-data sets needed for production of the output maps. 

The main ancillary data needed for EO data pre-processing are: a) digital elevation mod-

els (DEM) and b) topographic maps. It is not expected that any orthorectification is re-

quired for the HR satellite images. For processing of VHR images orthorectification with DEM 

is however often needed. So, the optimal available DEM resources area asked now to be 
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provided for the RS-NFI from Ukrainian partners. In case that no better suitable national 

DEM is available, the global DEM derived by the Shuttle Radar Topography Mission (SRTM) 

(https://www2.jpl.nasa.gov/srtm/) provides a good global alternative.  

Further, the global 3D elevation model from the TanDEM-X mission (https://ge-

oservice.dlr.de/web/dataguide/tdm90/) is freely available for scientific use. The role of 

topographic maps is mainly quality assurance of data sets, particularly when VHR RS-im-

ages are used. In addition to map data, e.g. Google Maps, Google Earth, Bing Maps and 

Open Street Map data can be used if official national data are not available. 

2.3.3. Reference data 

The main data source for the subsystem 2) computation of forest structural variables (cf. 

Figure 5) are the of pre-processed HR satellite images as outputs of sub-system 1). In addi-

tion, field reference data of the variables to be estimated is required. As the temporal, 

geometric and thematic accuracy of the field reference data affects the accuracy of the 

respective product, reference data should be highly accurate and available for each tar-

get variable. Consequently, the availability of reference data may limit the selection of 

output products. The reference data can be geocoded sample plot data, stand vector 

data derived from FMP or other maps. Where required, computation and format conver-

sions will be applied.  

The variables necessary to train a remote sensing data classifier for forest structural varia-

bles include information both on the site and the forest structure. It is important, that the 

reference data is provided in a standardized matter, including a short description on the 

collection process and context (e.g., FMP, NFI plots). The following Table 3 lists the variables 

together with the expected format/unit and a short description with the most important 

ones highlighted in bold. 

Table 3 Forest structure variable reference data 

Variable name Format/ 

Unit 

Description 

Year of data Integer Year of data acquisition 

Data type Categorical 
variable 

Type of reference data, integer as category: 

1. circular plot 

2. stand 

3. relascope plot 

4. other 

Plot center east m X-coordinate in UTM coordinate reference system 

The EPSG code of the UTM coordinate reference system should be in-
cluded in the description. 

Plot center north m Y-coordinate in UTM coordinate reference system 

The EPSG code of the UTM coordinate reference system should be in-
cluded in the description. 

Area of plot or stand  m² If multiple-radius plot, write area corresponding to the largest radius. 

Value -1 for a relascope plot. 
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Variable name Format/ 

Unit 

Description 

Soil type Categorical 
variable 

Specific soil type definition 

1. mineral 

2. organic 

Legend for categories should be given. 

If no detailed information is available (e.g., from soil maps), at least, it 
should be distinguished between mineral and organic soil (peat). 

Site index m h100: Height (hypothetical) of forest in meters at the age of 100 years 
with ideal tree species 

If h100 is not available, similar site index classes can be used. 

Layers Categorical 
variable 

Number of vertical layers in the forest, integer as category: 

1. even aged 

2. two layers 

3. three layers 

4. uneven aged 

If defined units cannot be reported, similar classes can be used. 

Forest type Categorical 
variable 

Specific forest type definition, integer as category: 

If no detailed or up to date information is available in form of maps, at 
least, the following ecoregion categories (Dinerstein, et al., 2017) could 
be applied: 

 Central European mixed forests 

 Crimean Submediterranean forest complex 

 East European forest steppe 

 Pannonian mixed forests 

 Carpathian montane conifer forests 

 Pontic steppe 

Legend for categories should be given. A detailed map of the forest 
types for the entire Ukraine may also be generated using RS-based 
methods. 

Tree species distribution:   

Species 1 % Proportion of tree species 1 by basal area including all layers 

Define tree species and coding with the delivery of reference data. 

Species proportions should sum up to 100 %. 

Species 2 % Proportion of tree species 2 by basal area including all layers. 

Define tree species and coding with the delivery of reference data. 

Species proportions should sum up to 100 %. 

Species n % Proportion of tree species n by basal area including all layers 

Define tree species and coding with the delivery of reference data. 

Species proportions should sum up to 100 %. 

Mean height m Basal area weighted mean height including all species and layers 

Mean diameter cm Basal area weighted mean diameter at breast height including all spe-
cies and layers 

Density n/ha Number of stems per hectare including all tree species and layers 

Stem basal area m²/ha Basal area of stems per hectare for the whole plot including all species 
and layers 

Mean age years Stand or plot level mean for main layer or dominant species 

Growing stock vol-

ume 

m³/ha Growing stock volume per hectare including all species and layers 
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Variable name Format/ 

Unit 

Description 

Increment m³/ha/a Increment of stock volume per hectare and year including all species 
and layers 

Biomass t dry/ha AGB and BGB per hectare including all species and layers 

Carbon stock t/ha C-content of biomass or CO2 equivalent per hectare  

Crown closure % Projected area of tree crowns as the proportion of the plot or stand 
area 

2.3.4. Pre-processing of satellite images 

The objective of the pre-processing subsystem is to produce Sentinel-2 satellite images 

that are ready for processing and analysis. The applied methods of the recommended 

Forest Flux service for the processing chain produces image data in a format that is directly 

compatible with the processing chain, along with masks that identify pixels that are not 

useful for further processing (i.e. cloud and cloud shadows mask). As the processing chain 

of the Forest Flux service use ER Mapper image as internal format, primarily ER Mapper 

images will be produced as output. In case the cloud and cloud shadow mask needs to 

be revised manually, an additional GeoTiff file is produced which can be processed in any 

local GIS software. 

The HR Sentinel-2 images are selected interactively using the F-TEP search tool. The se-

lected image is then taken as input by the EnvimonS2 tool (Figure 6), implemented in F-

TEP. The EnvimonS2 service unpacks the Sentinel-2 image from zip archive to ER Mapper 

format (.ers). Available pixel size options are 10 m, 20 m and 60 m. For Level 2A images, the 

cloud mask is extracted from the 20 m resolution scene classification image produced by 

the Level 2A processing. The output is a GeoTiff file with pixel values of 255 for the classes 

saturated/defective, cloud shadows, clouds (low/medium/high probability) and cirrus and 

value 0 for other classes. The output of the pre-processing step is a zip file that contains the 

Sentinel-2 image bands in the selected pixel size and one cloud mask. A flow chart of the 

HR data pre-processing is provided in Figure 6. 
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Figure 6 Flow chart for the pre-processing of HR satellite images (Häme, et al., 2022) 

As alternative we can implement the pre-processing steps using the Sen2Cor1 processing 

tool provided by the ESA. Sen2Cor also produces indicators for cloud and snow probabili-

ties and a cloud and cloud shadow mask. The mask and the cloud probabilities are com-

bined into an initial cloud mask candidate, which is then interactively evaluated in a GIS 

program and manually fine-tuned. For visual validation, false and true color images are 

compiled from every Sentinel-2 image. 

2.3.4.1. Pre-processing of VHR images 

The level 1 source of reference data, which is used as additional source of information in 

combination with level 2 and level 3 data is especially relevant also for all inaccessible 

areas with insufficient level 2 and level 3 reference data. In this preprocessing step the use 

of these VHR remote sensing images like aerial images, sat-images, open data images 

from Google or Bing Maps are described. The VHR images are used by visual interpretation 

of targeted attributes like forest / non forest or forest type, age classes etc. and allow to 

select and delineate homogenous reference polygons from level 2 and level 3 sources. 

 
1 https://step.esa.int/main/third-party-plugins-2/sen2cor/ 
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The aim of pre-processing is to create a dataset from which reference data can be ex-

tracted for both land cover classification and change monitoring. This requires that the 

images are correctly orthorectified and that they are suitable for visual interpretation.   

Figure 7 provides an overview of the related processing chain from VHR images to the 

respective reference data. 

 

Figure 7 Pre-processing chain for VHR satellite images (Häme, et al., 2022) 

For images that are received as orthorectified, true and false color images is computed 

using pan-sharpening. For images that are received as ortho-ready, ortho-rectification us-

ing available DEM and nearest neighbor resampling is applied before pan-sharpening. 

After pre-processing, reference data are collected via visual interpretation. Attributes are 

recorded remotely for each plot according to an expert assessment using VHR images 

and GIS. This process is facilitated by means of a support tool which allows rapid navigation 

between and evaluation of samples and easy recording of the respective attribute values. 

2.3.4.2. Output of EO data pre-processing 

The outputs from the subsystem EO data pre-processing consist of: 

• Pre-processed wall-to-wall images 

• True color mosaic from wall-to-wall data 

• False color mosaic from wall-to-wall data 

• True color mosaic from VHR images 

• False color mosaic from VHR images 

• Reference data sets collected from the VHR images 

The pixel size of the wall-to-wall images is in the case of Sentinel-2 is 10 meters and for VHR 

satellite images the pixel size of the respective panchromatic band of the image. 

2.3.5. Computation of forest structural variables 

The main components of the subsystem 2) Computation of forest structural variables in-

cluding land cover classification, are algorithms of the Probability chain software 

(Proba_cluster, Proba_model, Proba_estimates) that define a non-linear mapping from a 



  

 

 

20NFI Ukraine – RS based inventory – concept study  

multi-dimensional input space (reflectance values) to a multi-dimensional output variable 

space classification, using EO and reference data. The Probability chain software has been 

provided based on a development of VTT Technical Research Centre of Finland and is still 

maintained by VTT. The computation chain produces probability estimates for all forest 

variables for which reference information is available. In addition to the Probability chain 

software tools, the chain includes a post processing step to apply masks to the estimate 

images and in case of category classification, compile the final classification from the con-

tinuous estimate layers. Figure 8 provides a schematic overview of the respective subsys-

tem. 

 

Figure 8 Computation chain of forest variable prediction and land cover classification 

(Häme, et al., 2022) 

The probability estimation is based on the algorithms described in Häme et al., 2001. First, 

an unsupervised clustering is performed in the image feature space using a k-means algo-

rithm via the Proba_cluster tool. Consequently, feature classes are produced (typically be-

tween 30 – 50), along with the respective statistics and normal distribution parameters for 

each class. For each feature class, the values of the target variables are assigned using 

the reference data and the Proba_model tool. The Proba_model can use reference data 

in stand, plot, or image format. In the final step of the probability estimation, the variable 

predictions are computed as weighted sum of target values of all feature classes with the 

Proba_estimates tool. The assigned weights correspond to the probabilities of a pixel to 

belong to each feature class. The basic principle of the probability estimation is that all 

variables are treated as continuous. However, the method can be used also for land cover 

classification tasks. When the probability estimation method is applied for classification, 

the reference data category classes are first converted to continuous variables, resulting 

in e.g., pixel values of a forest and non-forest reference map of 0 or 100%. At the final stage, 

the category classification is produced from the continuous predictions using a rule-based 

classification. It is also possible to directly label the feature classes produced by 

Proba_cluster to category classes using reference data or interactively using visual inter-

pretation of the source data or VHR satellite images. The tool proba_estimates computes 

a prediction for each target variable for every pixel in the image. E.g., for forest cover 

maps prediction probability values ranging from 0 to 100% are assigned to every pixel in 

the respective image. As a result, each pixel is assigned to the class, whose proportion is 

the highest. If several classes are used in category classification, a hierarchical approach 

is applied. In the case of the growing stock volume every pixel is assigned the predicted 

stem volume value as cubic meters per hectare. Also, pixels covered by clouds, water and 
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agricultural land are given a forest variable prediction, if they have not been masked out 

and received a NULL value in the pre-processing. For the continuous forest variable prod-

ucts, the post processing module masks all classes that should not be considered for the 

forest variable prediction, i.e., non-forest pixels.  

2.3.6. Compilation of end products (maps) 

The estimates of the expected forest structural variables are produced by the “forest in-

ventory tool”. The forest inventory tool produces one layer for each defined forest variable 

or category for which reference data is available. By default, the pixel size of the produced 

maps is 10 m for Sentinel-2 data. The value of each pixel corresponds directly to the esti-

mated value of the variable or the coded category class.  

As set of products the following targeted continuous forest variable spatial layers (maps) 

can be processed for the whole area of the Ukraine – each with a resolution of 10 m: 

• Forest mask or forest cover map  

• Tree species distribution maps 

• Forest Type map  

• Mean tree height [m] 

• Tree mean diameter [cm] 

• Stem number/density [n/ha] 

• Basal Area [m2/ha] 

• Average Age [yrs] 

• Mean growing stock [m³ / ha] 

• Increment [m³/ ha]  

• Above and below ground biomass [t dry/ ha]  

• Carbon stock [t / ha] 

• Crown closure / Total relative stocking [%] 

Examples of final products and levels of potential accuracy  

In the following we provide some samples for the final products and describe which levels 

of accuracy could be achieved based on experiences from our Forest Flux project, but 

also from previous research studies mainly from Scandinavia. According to the experi-

ences with the Forest Flux processing service, overall accuracies of around 70-95% have 

been observed for discrete variables, depending on the number of classes latest in the 

frame of the pilot studies during the Forest Flux project but also in research projects in Scan-

dinavia before. Figure 9 Examples land cover and tree species classification in Finland (left) 

and species-wise growing stock volume estimation (right, Forest management units out-

lines in red) (Häme, et al., 2022) 
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 provides examples of discrete land cover and tree species classifications based on Senti-

nel-2 data from Finland. For continuous variables, Root Mean Square Error (RMSE) levels of 

around 30-60% of the mean have been reached on plot level, depending on the variable 

in question (Astola et al. 2019). In practice, the plot level errors tend to balance each other 

out, resulting in increasingly accurate estimates as the area of interest gets larger. The bias 

is typically very low, indicating that on average the estimates are very close to reality. This 

forms a firm basis for reliable estimates of forest structural variables for the area of interest. 

  

Figure 9 Examples land cover and tree species classification in Finland (left) and species-

wise growing stock volume estimation (right, Forest management units outlines in red) 

(Häme, et al., 2022) 

The right image in Figure 9 Examples land cover and tree species classification in Finland 

(left) and species-wise growing stock volume estimation (right, Forest management units 

outlines in red) (Häme, et al., 2022) 

 shows growing stock volume estimates per tree species for pine (Pinus sylvestris), Spruce 

(Picea abies) and broadleaved trees, respectively. For reference, forest management 

units are outlined in red, showing a good match with the detected variability of growing 

stock volume per tree species. 
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Figure 10 Example of forest cover (green) and non-forest (white) map in Germany (Häme, 

et al., 2022) 

 

Figure 10 shows an exemplary extract of a forest cover map for an area of approximately 

13 km x 9 km in Germany. Here, the accuracy computed using visually interpreted sample 

plots was 95%. However, accuracies obtained for continuous variable estimates at plot 

level range between RMSEs of 30 to 60%, which is in line with accuracies obtained in other 

projects ( e.g. Astola et al. 2019). However, accuracies vary between structural variables, 

being highest for diameter, height, and stem basal area (Fehler! Verweisquelle konnte 

nicht gefunden werden.). Since bias is typically rather low, it is assumed that on average 

the estimates were very close to reality. Results also vary between sites. 
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Figure 11 Mean estimated basal area/ha (Germany, left) and Forest type classification 

(Finland, right)  (Häme, et al., 2022) 

For stem volume (Figure 12 Tree height (left) and stem volume products (right) in Romania  

(Häme, et al., 2022) 

), the RMSEs are typically above 50%.  

Figure 12 Tree height (left) and stem volume products (right) in Romania  (Häme, et al., 

2022) 

 

Class 

No data (e.g. clouds)   

Non-forest   

herb-rich forest   

herb-rich heath forest   

mesic heath forest   

sub-xeric heath forest   

xeric heath forest   

barren heath forest   

 

Tree height 

No data    

Non- and open 

forest 
  

≤ 5 m   

5.1-10 m   

10.1-15 m   

15.1-20 m   

20.1-25 m   

25.1-30 m   

> 30 m   

Stem volume 

Non-forest   

Open forest  

≤ 50 m3/ha   

51-100 m3/ha   

101-150 m3/ha   

151-200 m3/ha   

201-250 m3/ha   

251-300 m3/ha   

> 300 m3/ha   
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Figure 13 False color composite and tree species proportions in Finland (Häme, et al., 

2022) 

For tree species, results vary remarkably depending on the species and area of interest. 

E.g. in Finland (Figure 13 False color composite and tree species proportions in Finland 

(Häme, et al., 2022) 

), map accuracies were estimated as relative RMSE of 54% for pine (bias -0.3%, top right), 

relative RMSE of 63% for spruce (bias -0.6%, bottom left) and relative RMSE of 88% (bias 

1.1%, bottom right) for broadleaves, respectively. 

 

Proportion of pine 

unit: % 

Non-forest  

Open forest  

0-20%  

21-40%  

41-60%  

61-80%  

81-100%  

 

Proportion of spruce 

unit: % 

Non-forest  

Open forest  

0-20%  

21-40%  

41-60%  

61-80%  

81-100%  
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Part II: Acquisition, description, and analysis of 
reference data 

The following sections describe the necessary input data and method to determine the 

required amount and relevant reference data from forest management planning (FMP) 

and national forest inventory (NFI).  

The estimation of forest structure variables, using remote sensing methods, relies on suffi-

cient and qualitative reference data. The acquisition of such data is often limited by avail-

able resources. Hence, our goal is to make use of as much reference data as possible. 

While ensuring the quality of the data used, we also apply methods to determine the min-

imum required data to achieve the pursued accuracy.  

To achieve the predefined accuracy for the classification of remote sensing images, we 

prepare reference data by first selecting relevant data, estimating additional field work 

that may be required and preprocessing steps required. To determine if data is relevant, 

we consider the eligibility of available datasets and estimate the additional field work that 

will be required. We then evaluate the added value of including more data and the re-

sources required to achieve the agreed accuracy goal. The reference data selection and 

acquisition can therefore be split into three stages: 

1. Eligibility assessment: 

• analyze and determine if any readily available data could be used as reference 

data in addition to the NFI field data collection (e.g., previously collected NFI data 

or FMP data) 

• analyze any available data for its recency, accuracy and if the required attributes 

listed under 2.2.3 can be derived from the data (no processing required) 

2. Relevance assessment: 

• determine the amount of refence data necessary to achieve a given accuracy 

• define spatial grouping variables (e.g., forest types) and delineate their spatial 

boundaries to preselect relevant data sets and field plots  

3. Preparation: 

• select the reference data sets (based on 1. and 2.) from the preselected available 

data sets 

• add as many field survey plots as possible to fill any gaps in data availability  
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3.1. Required data 

3.1.1. Reference data 

FMP data 

• For eligibility assessment: attributes are collected 

• For relevance assessment: Polygons or points indicating positions for where FMP data is 

available including information on the method and date of data acquisition and possi-

bly information on the accuracy of the estimated stand level data if it can be included 

without any processing of data (any other stand level information, such as species or 

age composition, would also be beneficial, if it does not require any processing)  

• For reference data preparation: Polygons or points with all stand level data necessary to 

prepare the data as required under 2.3.3 

NFI data 

• For eligibility assessment: attributes are collected with coordinates 

• For relevance assessment: Coordinates of all NFI data collection plots (DCP), including 

the already measured plots and the planned plots for 2023 and later 

• For reference data preparation: Coordinates with plot level data collected in the field 

3.1.2. Ancillary data 

• Inaccessible areas: Polygons of areas not accessible due to the ongoing war 

• Forest types: Polygons for the entire forest area of all of Ukraine delineating coherent 

forest types 

3.2. Eligibility assessment 

For reference data to be considered eligible it needs to meet the following criteria: 

• it shall enable the preparation of all required attributes listed under 2.2.3 

• it shall be collected within the last 5 years 

• if it consists of sample based estimates, it shall optimally have a relative standard error 

below 10 % at a 95 % confidence level 

• it shall describe plots or stands homogeneous in species and age composition  
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3.3. Relevance assessment 

Data grouping 

To reduce the number of required samples, the population (entire forest area), which is 

being sampled, is partitioned into subpopulations (forest types). By grouping together co-

herent forest areas composed of similar forest types, the variance of the corresponding 

forest structure variables is reduced, and thus less samples are needed to make significant 

estimates for the subpopulations. The following considerations need to be taken into ac-

count for the final definition of applied forest types: 

• If there is no forest type data available for the entire area of the country and no litera-

ture/publication is available, an alternative could be using a combination of ecore-

gions (Central European mixed forests, Crimean Submediterranean forest complex, East 

European forest steppe, Pannonian mixed forests, Temperate coniferous forests, Carpa-

thian montane conifer forests, Temperate grasslands, savannas and shrublands, Pontic 

steppe) or climate zones and administrative districts. 

• If country wide forest type data is available, and the forest type data is very nuanced, 

it should be grouped by similarity, to produce up to approx. 5 forest types per ecoregion 

/ climate zone. The similarity is determined based on growth characteristics. 

• It further needs to be determined, if there are any forest types, which are completely 

inaccessible (e.g. Crimean Submediterranean forest complex ecoregion). In such 

cases, representative forest types need to be determined. 

Required sample size per group 

The required sample sizes are then calculated for each forest type separately, using the 

averages and standard deviations of one of the main attributes (e.g., growing stock) avail-

able from existing data (e.g., forest management planning data). 

The required sample size is determined using the formula for continuous data developed 

by Cochran (1977): 

� = ���� �
�
 

With: 

• � as the required sample size 

• � as the critical value for the desired confidence level (two-tailed) 

• � as the estimated standard deviation (e.g., determined through preceding study) 

• � as the accepted margin of error (in the unit used for the standard deviation) 

FMP data coverage 

Once the required sample sizes for each forest type are determined, it is checked, how 

many FMP data sets are available per forest type. As not all FMP data sets may be appli-

cable as training data, the data needs to meet the following prerequisites: 
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• Recent: collected within the last 3 years (2020-2022), maximum 5 years 

• Consistent: the described stand should be relatively homogeneous in species and age 

composition 

• Accurate: if the stands are measured using a sample-based approach, the relative 

standard error of the estimates of the forest structure variables should be lower than 20 

% at a 95 % confidence level 

NFI plot recommendation 

NFI plots should be selected for these forest types, which are not represented sufficiently 

by the FMP data, with the aim of filling any gaps in the reference data. If all forest types 

are already sufficiently covered through FMP data, the NFI plots should be distributed be-

tween the forest types in a way to get the distribution of reference data between the forest 

types closer to the distribution of the calculated required sample sizes. 

 

3.4. Preparation of reference data 

3.4.1. FMP data 

3.4.1.1. Description of FMP data as reference data source 

FMP data in Ukraine represent detailed stand attributes that are  updated usually in 10-

year intervals through field surveys. The surveys are conducted within all forests managed 

by branches of the State Forest Enterprise (SFE) “Forests of Ukraine” or other users, e.g., 

municipal forest enterprises, protected areas, etc.. Thus, the FMP data over Ukrainian for-

ests were collected in different periods. 



  

 

 

30NFI Ukraine – RS based inventory – concept study  

 

Figure 14 Example for FMP polygons, color-coded by dominant tree species 

During FMP-surveys, forest stands are visited by field crews to evaluate their characteristics. 

Boundaries of forest polygons, i.e., forest stands, temporally unforested areas (harvested 

areas, burnt areas, dead forests, unstocked forests, etc.), and non-forested areas (mead-

ows, bogs, unproductive areas, waters, etc.), are updated in advance using the most re-

cent high-resolution remote sensing imagery. These boundaries can be corrected during 

field visits. Site conditions are evaluated for all forested and temporally unforested areas. 

There are two indices used to characterize site quality: forest site conditions and forest 

type. The forest site condition describes soil fertility (four levels, A - the poorest fertility, D - 

the most fertile soils) and soil moisture (6 levels, 0 - very dry to 5 -very wet). The forest type 

is a more complex characteristic that apart from soil fertility and soil moisture provides also 

a list of species representing a native forest stand in this area. The forest type classification 

in Ukraine is rather complex. It includes more than 100 forest types that are specific for the 

Carpathians Mountains, a non-montane territory with some modifications for the Right-

Bank (Dnipro river) and Left-Bank Ukraine. 

Trained field crews use mostly ocular methods to estimate forest stand attributes which can 

be combined with elementary tree measurements (measuring heights and diameters of 

average trees) or sampling. However, the use of point-sampling is obliged within prema-

ture, mature, and overmature stands to obtain precise estimations of basal area. For 

younger stands, only relative stocking is visually evaluated as a fraction of the stand occu-

pancy in comparison with the normal stand within a given site. This is somewhat subjective 

and largely depends on a surveyor's experience. The stand characteristics include a list of 

forest attributes that describe each tree species within stand’s layer: origin, age, mean 

diameter, mean height, relative stocking or basal area, and percentage of merchantable 
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trees. Site index is provided only for dominant species. Growing stock volume is estimated 

using yield tables for a given age, height, and relative stocking. 

For the full list of stand level attributes, please see the FMP attribute structure in the annex 

A 2.  

3.4.1.2. Preparation of FMP data as reference data source 

Spatial and attribute FMP data are stored in two separate data sets that can be joined 

using a unique stand ID (A 2). It can be a combination of the following fields of the FMP 

database:  

 KALG - forest management unit (branch of the SFE “Forests of Ukraine”) 

 KAIG - forest management sub-unit 

 KAWN - forest block 

 KAVN - forest polygon (stand) 

The FMP attribute information is structured in a relational database that links tables to de-

scribe different forest polygon characteristics (Figure 15).  

 

Figure 15 Relationships of tables in the FMP database 

The following information can be derived from the database and used as the reference 

data source in the study: 

 Table M01 – general information on forest polygon: stand area (KAVS), land use (KAKZ) 

 Table M05 – general information on forest stand: main species (KAPL), site index 

(KAB_), forest type (KATL), forest site conditions (KATU) 

 Table M10 – characteristics of stand layers: layer number (KAJA), relative stocking 

(KAP_), growing stock volume per ha (KAMG) 
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 Table M10A – tree species characteristics: tree species (KASP), fraction of species 

abundance (KASS), age (KAA_), mean diameter (KAD_), mean height (KAH_), basal 

area (KAGS). 

Thus, forest polygons can be joined with associated forest attributes. In the study, the stand-

level information should be used in a two-way table in which rows represent unique forest 

stands and columns represent forest attributes. 

The following table presents the list of targeted forest structural variables on the one side 

and the related FMP stand level attributes, which can directly be used or based on them 

the target variable can be derived for the RS based NFI: 

Table 4 Forest structure variable reference data 

Target varia-

ble 

For-

mat/Unit 

FMP attribute(s) – 

Abbreviation 

FMP Attribute and explanation of its 

processing 

Year of data integer KAVQ  Year of forest management planning in-

ventory survey 

Area of plot or 

stand  

m² KAVS Forest sub-polygon area 

Soil type Categorical 
variable 

KATU Forest site conditions 

Site index m KAB_ Site Index 

Layers Categorical 
variable 

KAJA (calculated) Calculated from variable “Layer” 

Forest type Categorical 
variable 

KATL Forest Type 

Tree species distribution:    

Species 1 % KASP + KASS  

(calculated) 

Tree species combined with Species 

abundance (in % of BA) 

Species 2 % KASP + KASS 

(calculated) 

Tree species combined with Species 

abundance (in % of BA) 

Species n % KASP + KASS 

(calculated) 

Tree species combined with Species 

abundance (in % of BA) 

Mean height m KAH_ (calculated) Mean height of tree species in layer 1 

Mean diameter cm KAD + KASP + KANT 

(calculated) 

Mean DBH of tree species in layer 1 

weighted by N of trees per ha  

Density n/ha KANT + KASP (calcu-

lated) 

N of trees for all tree species in all layers 

per ha 

Stem basal area m²/ha KAGS + KASP BA of all tree species in all layers per ha 

Mean age years KAA + KAGS (calcu-

lated) 

Mean age of all tree species in layer 1 

weighted by N of trees per ha  

Growing stock 

volume 

m³/ha KAMQ + KAGS 

(calculated) 

Volume of all tree species in all layers per 

ha 

Increment m³/ha/a KAMZ + KAGS (calcu-

lated) 

Increment of all tree species in all layers 

per ha 

Biomass t dry/ha KAMQ + KAGS  

(calculated) 

Above and below-ground biomass de-

rived from volume and respective bio-

mass conversion factors  
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Target varia-

ble 

For-

mat/Unit 

FMP attribute(s) – 

Abbreviation 

FMP Attribute and explanation of its 

processing 

Carbon stock t/ha KAMQ + KAGS  

(calculated) 

Derived from biomass and respective 

conversion factors 

Crown closure % KAPP  Total relative stocking (1+2+3 layers) 

  

3.4.2. NFI data  

3.4.2.1. Description of NFI data as reference data source 

NFI data is collected within forest inventory plots of the same configuration and spatial 

arrangement across all of Ukraine. The sampling frame of the NFI was designed using a 5 x 

5 km regular reference grid. Within this grid, clusters of four sample plots are located ran-

domly excluding a buffer zone of 250 m along the perimeter of the reference grid cells 

(Figure 16). 

 

Figure 16 Clusters of four sample plots per grid cell for one oblast 

Within this grid, clusters of four sample plots were randomly located excluding a buffer 

zone of 250 m along the perimeter of the reference grid cells (Figure 14). Sample plots are 

distributed with 420 m spacing in corners of the square cluster (Fehler! Verweisquelle 

konnte nicht gefunden werden.). The clusters are measured on five-annual rotation 

scheme. 
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Figure 17 One Cluster including four sample plots with a survey radius of 12.62m, each 

The NFI sample plot consists of four nested circular plots of fixed area (Figure 17). The main 

plot with a radius of 12.62 m (500 m2) is used to measure trees with a diameter at breast 

height greater than 26 cm. Subplots of 8.92 m (250 m2), 3.98 m (50 m2), and 0.56 m (1 m2) 

are designed to measure smaller trees using the following diameter thresholds: 14-26 cm, 

6-14 cm, and 2-6 cm, respectively (Figure 18). Nested sample plots that straddle stands 

boundary are divided into segments.  

 

Figure 18 Plot design - concentric circle structure 
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Trees are mapped within the relevant plot radius. Diameters are measured for all tally trees, 

while heights are measured only for sample trees. The sample trees are selected for each 

species using their diameter distributions. More than four heights are measured for domi-

nant species selecting trees within sample plots from different diameter classes. For the rest 

species, at least one (<20% in species composition) or two (>20% in species composition) 

average sample trees are selected. Additionally, two average tariff trees sampled outside 

sample plots are used to characterize stand age and increment using bores. 

3.4.2.2. Field measurements are automatically stored in a database which 

controls the quality of the collected data.Preparation of NFI data as 

reference data source 

The NFI data collected on nested sample plots should be processed to obtain per-hectare 

information on key forest attributes (see Table 3 Forest structure variable reference dataTa-

ble 3). There are following issues need to be considered in the calculations: 

 Information is assigned to individual segments of a sample plot, thus this needs to be 

considered in data processing collected on the corresponding nested plot. 

 Plot-level variables (e.g., land use, forest type conditions, site index, etc.) inde-

pendently characterize each plot’s segment. 

 Per-hectare estimates for tree-level variables are obtained using varying tree factors 

that depend on the plot radius and area of the corresponding segment. 

Processed NFI information can be joined with earth observations (Sentinel 2 spectral pro-

files) and ancillary data using plot-level estimates. Respectively, plots that straddle differ-

ent land use categories (i.e., forested and unforested) need to be excluded from further 

RS-based analysis. Potentially, it can cause mixed pixels problems, especially if the coordi-

nates of plot centers are not precisely calculated on the field (marginal errors can make 

up to 10 m).  It is also necessary to exclude from forest attribute predictions all completely 

forested plots that represent forest stands of different ages. Fehler! Verweisquelle konnte 

nicht gefunden werden. represent a set-up for visual interpretation of VHR imagery to de-

termine if level 2 and 3 data is located within a homogenous area.  
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Figure 19 Example of a level 1 data (VHR base-map) overlayed with a 10 x 10 m grid rep-

resenting the pixel size of HR Sentinel-2 imagery to determine if a sample plot (center-

point) is located in a suitable homogenous area for reference polygon delineation 

 

However, the final decision on plot inclusion in the analysis can be made directly in the 

modeling using leave-one-out predicted values of the corresponding attribute.  

With the help of the following set of spatial data layers the reference polygons can be 

evaluated and delineated (Table 5). 

Table 5: Spatial Data Layers used inside a GIS for evaluation and delineation of NFI plots 

Spatial Data  Usage  

VHF satellite images, preferably true and 

false color composites  

Main source for forest cover information 

within a NFI plot  

NFI plot locations  Location of NFI survey plot, Used to create 

buffer (see below) 

Buffer of 12,62m around NFI plot locations  Information on the survey plots area  

Grid with 10m x 10m cells in line with the pix-

els of Sentinel 2 imagery  

Cells that intersect with the buffer of the sur-

vey plots are used to store information for a 

10x10m polygon that can be used as refer-

ence data  

Climatic zones polygons Additional Information on forest tree spe-

cies composition in a given area 
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Part III: Implementation Plan 

In this part III the implementation of the above described concept for a RS based NFI is 

described in the form of a rough work- and time plan. It also contains the share of available 

resources in form of expert workdays. The budget in time and financial resources was fixed 

and concluded earlier in autumn 2022 and just gave the frame to consider the share for 

the different tasks and processing steps described in the following table. 

   

Table 6: Proposed work- and time plan for the implementation of the RS based NFI 

Tasks ISTE subtasks Pro-

pose

d n 

of 

work

days 

NSTE subtasks Pro-

pose

d n 

of 

work

days 

Due 

date 

Method description Description of methods 

applied throughout the 

analysis 

10  0 31.12.

2023 

Building capacities with 

local experts enabling 

future autonomous 

analysis 

10 Training of national forest 

inventory experts 

15  

Data acquisition Consulting the local ex-

perts in the require-

ments for satellite data, 

reference data and 

any ancillary data nec-

essary to conduct the 

analysis 

15 Acquire raw data rele-

vant for reference data 

preparation (all three lev-

els: FMP & NFI data + aer-

ial imagery) 

5 31.03.

2023 

Data preparation Consulting the local ex-

perts in the process of 

preparing the satellite 

data, reference data 

(including QA/QC) and 

any necessary ancillary 

data 

15  0 15.10.

2023 

 0 Determine minimum sam-

ple size per group (forest 

type) 

3 01.04.

2023 

 0 Determine eligible FMP 

stand data 

3  

Support reference data 

validation work process 

5 Set up reference data 

validation work process 

5  

 0 Prepare FMP data for the 

use as RS reference data 

36  
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Tasks ISTE subtasks Pro-

pose

d n 

of 

work

days 

NSTE subtasks Pro-

pose

d n 

of 

work

days 

Due 

date 

 0 Prepare previously col-

lected & 2023 NFI data as 

RS reference data 

15  

Selection and prepro-

cessing source data 

(Sentinel 2 images) 

10  0  

Model training and 

derivation of forest 

structural variables 

Supporting the produc-

tion of RS based estima-

tion of forest structure 

variables using Forest-

Flux on the F-TEP plat-

form, including the cal-

culation of perfor-

mance metrics 

13 Production of RS based 

estimation of forest struc-

ture variables using 

ForestFlux on the F-TEP 

platform, including the 

calculation of perfor-

mance metrics 

15 15.11.

2023 

Processing of RS and 

field inventory out-

put into maps and 

tables structured for 

NFI reporting 

Supporting the aggre-

gation of the RS analysis 

output into reporting ta-

bles 

10 Aggregation of the RS 

analysis output into re-

porting tables 

25 15.12.

2023 

  88  122  

 

 



  

 

 

39NFI Ukraine – RS based inventory – concept study  

A 1. Use of remote sensing in forest inventory and 
mapping in Ukraine 

A 1.1. Recent advances improving the RS-based forest monitoring   

capacity in Ukraine 

Mapping forest cover using dense satellite time series 

The forests in Ukraine are heavily disturbed due to intensive human activities (logging, in-

frastructure development) and natural factors (wildfires, insects). For example, recent bee-

tle-caused pine forest dieback has dramatically impacted forest landscapes and resulted 

in more intensive salvage logging in the most forested northern regions. The forest decline 

and accumulation of dead fuels in line with the climate change have sufficiently increased 

the flammability of the landscapes which led to catastrophic wildfires. Still, the illegal am-

ber mining remains a very specific type of disturbance in northern Ukraine where about 

3,000 ha of forested lands have been degraded (Myroniuk et al., 2020). Thus, national for-

est policy requires continuously updated information to maintain biodiversity, economic 

value of forest resources, and support international reporting on forests at state level. 

Russian invasion of Ukraine has limited the ability of the National Forest Inventory because 

large areas of Ukraine are not available for field data collection. From this perspective, 

remote sensing technologies can provide significant support to the traditional methods of 

sample-based forest inventory. Apart from many developed countries that utilize remote 

sensing technologies at operational levels, Ukraine has not enough experience. However, 

recent studies including those conducted in Ukraine indicate the great potential of the RS-

NFI. 

The use of remote sensing technologies to monitor forest ecosystem dynamics over a 

range of spatial and temporal scales is well established. Retrospective analyses of forest 

dynamics has become a prominent component of modern forest monitoring as the avail-

ability of time series of satellite observations has been increased (Banskota et al., 2014; 

Gómez et al., 2016). Advances in dense time-series processing and implementation of the 

relevant algorithms on the Google Earth Engine (GEE) cloud-based platform (Gorelick et 

al., 2017) has improved the capacity to monitor forests over large spatial scales. Spectral 

trajectories of satellite time series have proven useful for detecting long-lasting and non-

stand replacing disturbance (Bullock et al., 2020; Chen, 2021; Coops et al., 2020). Various 

temporal segmentation algorithms have been proposed to describe these trajectories 

(Hermosilla et al., 2015a; Huang et al., 2002; Kennedy et al., 2010; Zhu & Woodcock, 2014). 

Moreover, studies have shown a potential to detect casual agents of forest disturbance 

using spectral change metrics (e.g., duration, magnitude) extracted from the temporal 

trajectories and use them in more accurate forest mapping (Nguyen et al., 2018a; 

Schroeder et al., 2017). Free access to satellite data has promoted efforts to developing 

methods of near-real time monitoring land cover (Brown et al., 2022; Francini et al., 2020). 
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The historically deep and data-rich Landsat archive has been recognized as an important 

resource for large-area forest monitoring. Benefiting from a free access policy, wide spatial 

coverage, moderate resolution of imagery, and over four decades of data acquisition, 

Landsat imagery has found extensive application in various monitoring programs (Wulder 

et al., 2012, 2019). Over the last decade, Landsat time series have been used as the basis 

for forest disturbance detection (Cohen et al., 2017; Nguyen et al., 2018a; Schroeder et al., 

2017), and as sources providing more stable spectral trajectories for forest classification 

(Hermosilla et al., 2018; Matsala, Bilous, Myroniuk, Holiaka, et al., 2021), including nearest 

neighbor imputation mapping (Bell et al., 2015, 2021; Kennedy et al., 2018). The LandTrendr 

(Landsat-based detection of Trends in Disturbance and Recovery) algorithm (Kennedy et 

al., 2010) has been used worldwide for annual change detection (Kennedy et al., 2012; 

Myroniuk et al., 2020; Nguyen et al., 2018a; Rathnayake et al., 2020) and improved multi-

year forest mapping  (Matsala, Bilous, Myroniuk, Holiaka, et al., 2021). Similarly, the Vege-

tation Change Tracker (VCT) (Huang et al., 2010) and the Composite-to-Change (C2C) 

approach (Hermosilla et al., 2015a) are mostly focused on detecting annual changes and 

producing corresponding maps of forest cover. Given the limitation for characterizing 

spectral variation caused by vegetation phenology using annual composites, the Contin-

uous Change Detection and Classification (CCDC) algorithm has become extremely use-

ful to derive intra-annual vegetation phenology and gradual inter-annual vegetation 

growth or abrupt change (Zhu & Woodcock, 2014). In addition to their ability to capture 

vegetation phenology, harmonic regression coefficients extracted from time series of 

spectral data have proven to be better predictors for key forest attributes than composite 

image variables. Particularly, Wilson et al (2018) achieved about two- to threefold increase 

in the coefficient of determination for models of continuous variables (i.e., number of trees, 

basal area, biomass) using harmonic models terms versus those using composite imagery. 

Further evaluation of seasonal composite and harmonic regression approaches identified 

better discrimination between forest types utilizing spectral trends and seasonality infor-

mation quantified with harmonic inputs (Adams et al., 2020). Moreover, Derwin et al. (2020) 

showed that adding harmonic terms to spectral data and other explanatory variables 

(e.g., terrain variables) improves the performance of predictive models. The CCDC algo-

rithm is also recommended as an effective means to deal with missed observations that 

appear due to the presence of snow or cloudiness (Awty-Carroll et al., 2019; Wilson et al., 

2018). More recent publications have demonstrated the potential for improvement of the 

CCDC algorithm to detect even subtle changes in canopy (Ye, Rogan, Zhu, Hawbaker, et 

al., 2021) and near-real-time forest monitoring (Ye, Rogan, Zhu, & Eastman, 2021; Zhu et al., 

2020). 

Use of RS-derived covariates for mapping forest inventory attributes  

The increased demand on spatially explicit information along with technological changes 

of data collection has led to wide application of LTS in support of forest inventories (Lister 

et al., 2020). However, national forest inventory programs were not initially designed to 

support mapped output, which is a key information need for most monitoring programs.  

Based on the seminal work of Tomppo (1990), many of these programs today use nearest 
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neighbor modeling techniques to relate ground-based observations from a sparse network 

of sample plots to spectral properties from remotely sensed observations in order to pro-

duce wall-to-wall maps of forest characteristics (Chirici et al., 2016; Eskelson et al., 2009; 

McRoberts et al., 2010).  

Within the forest inventory community, nearest neighbor imputation refers to a class of 

methods that estimate characteristics of target pixel based on k reference observations 

(i.e., field plots) most similar in multivariate space of ancillary remote sensed, topographic, 

climatic, and other environmental variables (Eskelson et al., 2009; McRoberts, 2012; 

McRoberts et al., 2010). Nearest neighbor imputation has emerged as effective technique 

for spatial prediction of forest attributes based on similarities between pixels associated 

with field plots and those without such association. This technique is recognized to be useful 

for spatial prediction because it is nonparametric and multivariate, and thus can be ap-

plied for simultaneously mapping multiple forest attributes (Henderson et al., 2014). The 

similarity between target pixel and reference observations can be determined using com-

mon distance metrics (e.g., Euclidean), or quantified using a multivariate ordination tech-

nique such as canonical correlation analysis (used in most similar neighbor (Moeur & Stage, 

1995)) or canonical correspondence analysis (used in gradient nearest neighbor (GNN) 

(Ohmann & Gregory, 2002)). An optimal choice of the number of neighbors (k) is always 

about the trade-off between accuracy and preservation of covariance among response 

variables. In particular, maps of forest characteristics produced with k = 1 nearest neighbor 

imputation model maintain existing combinations of attributes that can also be observed 

in the field (Ohmann et al., 2014). McRoberts (2009) demonstrated that covariance be-

tween forest attributes is preserved when only one nearest neighbor is used in imputation 

models. Conversely, nearest neighbor imputation with k > 1 usually minimizes the root mean 

square error of prediction (Hudak et al., 2008; Wilson et al., 2012) and higher values of k 

can be applied if there are large number of reference observations in the database (Es-

kelson et al., 2009). 

Forest mapping using nearest neighbor imputation methods is commonly used in national- 

and regional-scale forest monitoring projects (Beaudoin et al., 2018; Chirici et al., 2020; 

Wilson et al., 2012). More recent applications of these techniques are associated with ad-

vances in image processing and availability of free satellite imagery that has created op-

portunities for integration of temporal segmentation methods with nearest neighbor impu-

tation techniques. Such approaches provide an important insight into long-term monitor-

ing of forest attribute dynamics. Specifically, Ohmann et al. (2012) first used yearly covari-

ates derived from the LandTrendr temporal segmentation algorithm (Kennedy et al., 2010) 

as input to the GNN model to map yearly forest vegetation attributes in the Pacific North-

west USA. The LandTrendr temporal segmentation approach was also used to create tem-

porally smoothed synthetic imagery, which was utilized to map forest biomass dynamics in 

Australia using nearest neighbor imputations (Nguyen et al., 2018b, 2020). Bell et al. (2021) 

incorporated an ensemble LandTrendr disturbance mapping algorithm (Cohen et al., 

2018) to produce temporally smoothed LTS and assess trends in large live trees and snags 

using GNN imputation mapping. The C2C approach (Hermosilla et al., 2015b) for image 
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compositing was incorporated to predict forest structural attributes and aboveground bi-

omass using nearest neighbor imputation in Canada (Matasci et al., 2018; Zald et al., 2016). 

Implications for forest monitoring in Ukraine 

Traditionally, studies devoted to forest cover mapping in Ukraine were mostly focused at 

the Carpathians Mountains (Kuemmerle et al., 2009, 2011) or larger European territories 

including Ukraine (Griffiths et al., 2014; Potapov et al., 2015; Senf & Seidl, 2021). The authors 

reported on forest changes, but not on forest characteristics such as species composition 

and growing stock volume. Conversely, the few existing application of the nearest neigh-

bor techniques to map forest characteristics within local test sites in Ukraine (Bilous et al., 

2017; Matsala, Bilous, Myroniuk, Diachuk, et al., 2021) have not relied on data collected 

via a national forest inventory sampling design. 

Apart from many countries, the wide application of information extracted from remote 

sensing data in forest inventory is under development in Ukraine. Preliminary results of re-

gional-scale forest inventories that were conducted in Sumy and Ivano-Frankivsk oblasts 

(regions) during 2008¬–2015 and 2009–2015, respectively, demonstrated great potential for 

supporting decision making, and updating the national forest statistics (Storozhuk & Polley, 

2017). However, a detailed analysis of the collected data in combination with satellite time 

series has been provided in limited studies (Myroniuk et al., 2022). To the best of our 

knowledge, there were no more applications in Ukraine to monitor changes of forest char-

acteristics in a spatially explicit way using data obtained through the national forest inven-

tory program (i.e., wall-to-wall mapping). Thus, the current international experience can 

contribute to advance methodology of the RS-NFI in Ukraine. 

A 1.2. Implementation of Sentinel 2 imagery to map forest cover in 

Ukraine  

Existing sources on the spatial distribution of forest cover in Ukraine and 

the need to create and maintain an up-to-date forest mask for the entire 

territory of Ukraine 

The need for up-to-date, content-uniform, cartographically presented information on the 

distribution of forests throughout the territory of Ukraine is obvious in many areas of scientific 

and practical activity. Despite the long experience of forest research and the significant 

amount of information obtained, this issue has not yet been fully resolved in Ukraine. The 

last State Forest Assessment in Ukraine was conducted back in 2010. It was mainly statistical 

in nature and was not supported by cartographic materials.  

The experience of forest management works in Ukraine has allowed to collect a huge 

amount of information on forest cover, including its spatial distribution. However, the dis-

advantage of this information is its low “temporal resolution” and its temporal inconsistency 

(basic forest inventory is conducted once every ten years at different times for different 
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forest users), as well as the fact that it is conducted at the expense of forest users and 

therefore does not cover forests that are not in official forest use. An important source of 

information for studying the spatial distribution of Ukraine's forests can be the materials of 

the national forest inventory, but in Ukraine these works have so far been implemented 

only on the example of certain regions (Myroniuk et al., 2022). 

Another source of information on the spatial distribution of Ukraine's forests can be various 

global forest products (in particular, Global Forest Change (GFC), Landsat Tree Cover Con-

tinuous Fields (LTCCF), etc.). The advantage of such products is that they cover the entire 

territory of Ukraine, but they are not always accurate enough and are not always kept up 

to date. In addition, the issues of the spatial distribution of forest cover in Ukraine are con-

sidered in a number of scientific papers that contain both the justification of the method-

ology of such studies and the results of its practical application (e.g., Lesiv et al, 2019; 

Lyalko et al, 2019; Myroniuk, Kutia et al., 2020).  However, for objective reasons, such studies 

cover only certain time periods and/or certain parts of the territory of Ukraine. 

Thus, despite the certain triviality of this task, there is still a need in Ukraine to create an up-

to-date forest mask that would cover the entire territory of the country, be created ac-

cording to a single methodology, be constantly and promptly updated, integrate other 

sources of information on the spatial distribution of forest cover, and be available for wide 

use for practical and scientific purposes (including through integration into the National 

Geospatial Data Infrastructure). Obviously, the basis for creating such a forest mask should 

be remote sensing data, and the main its advantages are high enough speed and relative 

cheapness of creation and updating (but at the same time, relatively lower accuracy 

compared to forest management materials). Such a forest mask could also be of some 

use for the national forest inventory, starting from the planning stage of inventory works 

and ending with spatial representation and analysis of inventory data. 

The work on the creation of such a forest mask was carried out and continues to be carried 

out at the State Enterprise "Forestry Innovation Research Center" with the support of State 

Forest Resources Agency of Ukraine (Public report, 2022).  

Methodology for creating a forest mask of Ukraine based on Sentinel-2 

data 

First of all, when creating a forest mask, there is a need for a clear definition of "forest" 

concept, as there are its different interpretations for different purposes (Chazdon et al., 

2016, etc.). In our work, we used the definition of a forest as a land plot of at least 0.1 

hectare covered with woody vegetation, with crown coverage of at least 30% of the plot 

area. The "forest" category included all areas within Ukraine that met this definition, includ-

ing those that, according to Ukrainian legislation, do not belong to the forest fund (for 

example, green spaces within settlements). 

As the basic data for creating the forest mask there were used Sentinel-2 Level 2A imagery. 

Traditionally, in such works Landsat data have been widely used and continue to be 
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successfully used. At the same time, Sentinel-2 data have some advantages over Landsat 

data (which does not diminish the importance of the latter): 

• better spatial resolution of Sentinel-2 data (10 m and 20 m) compared to Landsat 8 data 

(30 m); this allows for more accurate identification of land cover types and their bound-

aries, including linear tree stands; 

• better temporal resolution of Sentinel-2 data – 5 days compared to 16 days in Landsat 

8; 

• a larger number of spectral channels in Sentinel-2 imagery (in particular, the presence 

of Band 5, Band 6, Band 7, Band 8A channels, which are absent in Landsat 8 data). 

One of the main advantages of Landsat imagery compared to Sentinel-2 imagery is a 

much longer time series of data, which reaches 50 years. At the same time, since the start 

of the Sentinel-2 mission in 2015, a certain data series (over 7 years) has also already been 

formed, which allows using various methods of spatiо-temporal analysis for Sentinel-2 data. 

At the next stage of the work, cloudless mosaics were created for the warm season (April 

– October) for each of the regions of Ukraine. To create seasonal cloud-free mosaics, we 

selected images in the appropriate time ranges with no more than 30% cloud cover. A 

cloud mask based on the Sentinel-2: Cloud Probability product was applied to all the sel-

ected images (the cloud probability value above which the data was excluded from 

further analysis was 10%). The seasonal mosaics were formed by determining the median 

value for each channel among all cloud-free values of each pixel for the corresponding 

time period. 

Аs the spatial basis for the training sample creation there was used the previously devel-

oped sampling network for the national forest inventory (Storozhuk, 2019). This will allow for 

a better combination of the national forest inventory data with remote sensing data in the 

future. The training plots were interpreted mainly with the help of open high-resolution im-

agery available in Google Earth Pro, using the OpenForis Collect Earth software (Bey et al., 

2016). An additional source for interpreting the training plots was the high-resolution Super-

View imagery available for certain regions of Ukraine. 

The training plots were classified into two classes – "forest" and "non-forest". Training plots 

for which it was impossible to unambiguously determine which land cover class prevails 

within their boundaries were not included in the training sample. For each of Ukraine’s re-

gions, from 1123 to 5389 training plots were interpreted (depending on the area of a re-

gion). In total, over 77 thousand training plots were interpreted for the entire territory of 

Ukraine. For some oblasts in the southern part of Ukraine, where too few forest training plots 

were interpreted, additional forest plots, that did not belong to the sampling network of 

the national forest inventory, were added to the training sample. 

The cloudless mosaics were classified in the Google Earth Engine environment. For all 

cloudless mosaics, the values of Band 2, Band 3, Band 4, Band 5, Band 6, Band 7, Band 8, 

Band 8A, Band 11, Band 12 channels, NDVI index, and tasseled cap transformation 

channels (brightness, greenness, wetness) were used as variables. The classification was 

carried out using Random Forest classifier. The forest masks were generated separately for 
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each region of Ukraine for 2020. For each of the obtained regional forest masks, the values 

of training overall accuracy and validation overall accuracy were at least 0.99. At the final 

stage, objects with an area of less than 0.1 hectares were removed from the resulting tree 

cover masks. 

Results of creating a forest mask of Ukraine based on Sentinel-2 data 

Currently, a forest mask of Ukraine for 2020 has been created (Fig. 1). The resolution of this 

forest mask is 10 m and it contains allotments covered with forest vegetation with an area 

of at least 0.1 hectares. 

 

.  

Figure 20 The forest mask of Ukraine for 2020 created based on Sentinel-2 data 

Based on this forest mask, the forest area was calculated for each oblast and for the entire 

territory of Ukraine. The resulting forest area in 2020 for Ukraine as a whole and for most of 

its regions is higher than according to State Forest Assessment data as of January 1, 2011. 

In particular, the forest area in Ukraine as a whole according to 2020 data exceeds State 

Forest Assessment data as of January 1, 2011 by about 1.5 million hectares. One of the 

reasons for such differences may be that State Forest Assessment did not take into account 

data on some forest users, as well as data on forest areas that did not have official forest 

users or were not considered as forests (self-sown forests, green spaces within settlements, 

etc.). Thus, if all tree stands with an area of 0.1 hectares or more are classified as forests, 

Ukraine's forest area (in % of land area) would be about 2.5% higher than according to the 

official data. 
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The data obtained refute to some extent the popular perception in Ukraine of a significant 

reduction in forest area over the past decades. The forest mask data show that in the most 

forested regions of Ukraine (Polissya and the Carpathians), there has been no significant 

decrease in forest area. In this case, it would be more accurate to speak not so much of 

a quantitative reduction of forest area in Ukraine as of a qualitative deterioration in the 

forest’s condition (both from forestry and biodiversity conservation perspective), due to 

the creation of monocultures that are less resistant to negative external influences. At the 

same time, in the eastern and southern regions of Ukraine, where the conditions for forest 

growth and regeneration are generally much less favorable, there is a noticeable 

decrease in forest area. This is especially true for coniferous stands on sandy terraces of 

rivers. 

Among the main problems that arise when creating a forest mask based on remote 

sensing data, we can first mention the presence of certain classification errors – when non-

forest areas are mistakenly classified as forest, or vice versa. The total percentage of such 

areas is generally quite small, but their presence negatively affects the accuracy of the 

data obtained. The main reason for such errors is the presence of land cover types with 

spectral characteristics similar to those of forests (in particular, shrubs, meadows, 

wetlands), which makes it difficult to distinguish between them. Another reason for 

classification errors is the complexity of vegetation cover, which does not always "fit" into 

the rigid and simplified framework of forest definitions. In some cases (e.g., in areas with 

sparse tree cover or in areas where natural reforestation is occurring), it can be difficult to 

clearly define which category a particular area belongs to – "forest" or "non-forest" – and 

to draw the line between "forest" and "non-forest" – even during field research. 

Another problem is the limitations of the spatial resolution of the remote sensing data used, 

which are especially critical when identifying linear tree stands that are widespread in 

Ukraine. The capabilities of Sentinel-2 data in this regard are better than those of Landsat, 

which allows for fairly accurate identification of linear objects with a width of more than 

20 meters. However, the task of identifying narrow linear tree stands cannot be fully solved 

even with Sentinel-2 data. 

The main directions of further work on creating the forest mask of Ukraine: 

• creation of forest masks for other years, spatio-temporal analysis and creation of a 

spatio-temporal forest mask for the entire period for which Sentinel-2 data are 

available, based on modern methods; 

• use of new high spatial resolution data to form a more accurate and detailed training 

sample to be used for the classification; 

• improving the classification methodology to more accurately identify "forest" and "non-

forest" in problem areas and, accordingly, reduce the number of classification errors; 

• integration of the obtained data with the national forest inventory; taking into account 

the data of the national forest inventory to improve the forest mask. 
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A 1.3. Role of satellite time series and nearest neighbor imputation 

technique in RS-based forest inventory of Ukraine 

Through the Fulbright Program, data exchange between the Center of national forest 

inventory of Ukraine, and cooperation between the USDA Forest Service (USFS) and 

Ukrainian scientists, the workflow to map forest cover, tree species, and growing stock 

volume (1990–2020) was developed and tested within two regions: Sumy and Ivano-

Frankivsk. This approach was based on historical forest inventory data collected during 

regional inventories between 2008 and 2015, Landsat time series, and GEE-based cloud 

computing algorithms (Myroniuk et al., 2022).  The CCDC segmentation algorithm was 

used to produce cloud-free and temporally smoothed spectral data which were coupled 

with reference observations obtained for each sample plot locations.  

The developed mapping workflow consisted of two consecutive phases: (i) forest/non-

forest mapping, and (ii) predicting basal areas to map species and growing stock volume. 

The forest maps were developed using Random Forest classifier (Breiman, 2001), while 

basal areas were predicted barely within produced forest masks using the Gradient 

Nearest Neighbor (GNN) imputation technique (Ohmann & Gregory, 2002). Both models 

were independently trained within the regions. Species distributions were mapped using a 

threshold of 1.0 m2 ha-1 and the GNN model with k = 1 nearest neighbor. The approach 

achieved better accuracy of discrete presence-absence maps of species or species 

groups that belong to common environmental niches. The GNN model with k = 3 was used 

to get a prediction of growing stock volumes (basal areas) exclusively for species groups 

since the accuracy of individual species was low. In total, 3202 and 9860 observations were 

used to map forest/non-forest within Ivano-Frankivsk and Sumy regions respectively, while 

only data from 838 (Ivano-Frankivsk) and 1196 (Sumy) forested sample plots were utilized 

in nearest neighbor imputation. 

The study showed positive dynamics of forest cover change between 1990 and 2020 for 

both regions (Figure 21). The accuracies of derived maps were high and stable over the 

study periods (OA > 0.96±0.02; UA > 0.94±0.03; PA > 0.93±0.04). Additionally, time series 

identified several hot spots of forest cover loss due to more intensive logging observed 

between 2000–2010 and 2010–2020 in the Carpathians Mountains. Analysis also 

documented two waves of forest regrowth on abandoned farmlands over the northern 

Ukraine occurred after collapse of the Soviet Union in 1991 and land reform in Ukraine 

(2000-2010). 
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Figure 21 Dynamics of mapped forested area (solid lines) based on Landsat time series 

classification with 95% confidence intervals (ribbons) for two regions in Ukraine (Myroniuk 

et al., 2022). 

The accuracy of GNN-derived presence-absence maps tended to decrease with species 

prevalence across the study regions. The model exhibited greater skill for Picea abies in 

the Ivano-Frankivsk (Cohen’s kappa = 0.500) and Pinus sylvestris in the Sumy region 

(Cohen’s kappa = 0.800) that had relatively higher mean values of basal areas and often 

grew in pure stands. In contrast, GNN predictions for some rare species was not much 

better than random prediction (e.g., Acer pseudoplatanus in Ivano-Frankivsk region, Co-

hen’s kappa = 0.081). Deciduous species, which normally grow in mixed stands (e.g., Frax-

inus excelsior, Acer platanoides, and Tilia cordata in the Sumy region), tended to exhibit 

similar map skill. The mapped distributions of the most common species (prevalence ≥ 20%) 

for both study regions were similar to the observed spatial patterns obtained from sample 

plots data at landscape-scales, represented in Figure 22 by 20-km hexagons. 
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Figure 22 Distribution of individual species within the Ivano-Frankivsk (top panel) and Sumy 

(bottom panel) region based on GNN imputation (k = 1): correlation coefficients represent 

the rela-tionship between mapped area of species within 20-km hexagon and number 

   

The GNN model with k = 3 nearest neighbors demonstrated ability to predict growing stock 

volume. R-squared values at Landsat 30-m spatial resolution (plot locations) varied for 

species groups between 0.33-0.53 (Ivano-Frankivsk) and 0.12-0.71 (Sumy), however, the 

performance of the developed imputation models increased at landscape level. For 

example, R-squared values increased to 0.50-0.74 (Ivano-Frankivsk) and 0.21-0.83 (Sumy) 

for aggregated at 5-km hexagon level. Similar tendency was observed for total basal area 

(growing stock volume) (Figure 23). 
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Figure 23 Predicted versus observed values of BA in Ivano-Frankivsk (top panel) and Sumy 

(bottom panel) region based on the GNN imputation model (k = 3) (Myroniuk et al., 2022).   

A 1.4. Conclusions  

From a methodological perspective, introduced by Myroniuk et al. (2022) a forest mapping 

and nearest neighbor imputations workflow in the GEE cloud-based platform enable users to 

follow this methodology over other regions of Ukraine with newly collected forest inventory 

observations and other types of satellite data (e.g., Sentinel 2). Fitted inter- and intra-annual 

trends in Landsat time series extracted using the CCDC segmentation algorithm strengthened 

multidecadal assessment of forest characteristics. This contributes to more reliable monitoring 

of forest cover and consistent estimation of forest area throughout time. Predictive 

performance of GNN imputation technique that utilized all available historical forest inventory 

data linked with the temporally normalized Landsat time series can be significantly improved 

when data are aggregated at higher than plot level domain. In addition to quality of RS data, 

spatial accuracy of field-sampled data is among key requirements to obtain accurate maps 

and estimates of forest inventory attributes. 
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A 2. FMP stand level attributes  

The attributes assessed and aggregated on a forest stand level can be used to define reference polygons as described in chapter 3.4.1 

above. As shown in Table 4 it is possible to derive and calculate all target forest structural variables based on the below listed set of stand 

variables for the purpose of the RS based NFI. FMP data in Ukraine represent detailed stand attributes that are updated usually in 10-year 

intervals through field surveys. The surveys are conducted within all forests managed by branches of the State Forest Enterprise (SFE) “Forests 

of Ukraine” or other users, e.g., municipal forest enterprises, protected areas, etc.. Thus, the FMP data over Ukrainian forests are collected in 

different periods. 

CODE NAME UKR Name ENG Definition/description of attribute 

М00 - загальна інформація про квартал – General information on forest block 

KALG Лісогосподарське 

підприємство 

State forest enterprise  

Compartment adress 

KAIG Лісництво Forest district 

KAWN Квартал Forest block (Compartment) 

KAKL Категорія захисності Conservation status  

KARA Адміністративний район Administrative district of Ukraine  

KAGE Тип рельєфу місцевості Relief (mountain, flat land)  

MAPL Площа кварталу Forest block area (Compartment area) Area in ha 

MAIS Джерело пожежної небезпеки Source of fire danger  

MARI Віддаль до джерела пожежної 

небезпеки 

Distance to the source of fire danger  

MAIR Радіаційне забруднення 

кварталу 

Radioactive contamination level  

MATN Табельний номер таксатора Forest surveyor  

MAEK Лісовпорядна експедиція Forest survey  
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CODE NAME UKR Name ENG Definition/description of attribute 

PPOV Місцевий орган влади Local authority body  

PPPZ Природна зона Climatic zone  

PPGL Група лісів Forests Groups (commercial, …)   

OBLA Адміністративна область Administrative oblast of Ukraine  

 

М01 - загальна інформація по виділу – General information on forest polygon 

KALG Лісогосподарське 

підприємство 

State forest enterprise  

Stand address  

KAIG Лісництво Forest district 

KAKL Категорія захисності Conservation status 

KAWN Квартал Forest block (compartment) 

KAVN Виділ Forest polygon (Forest Stand) 

KARN Підвиділ Forest sub-polygon2 (Sub-stand) 

KAVS Площа виділу (підвиділу) Forest sub-polygon area All attribute information is provided for sub-polygon (sub-

stand), e.g., 1,2, … . However, more often polygons are not 

divided, so that there will be only one record 

KAKZ Категорія земель Land use category  

KAKI Ознака земель переданих в 

тимчасове користування 

Sign of land transferred for temporary use Information on who manages forests - permanent (state en-

terprise) or temporal (game management, recreation) us-

ers. 

KAZU Ознака особливо захисних 

ділянок лісів 

A sign of particularly protective areas of 

forests 

This refers to presence of some high conservation values 

(rare species) 

KAVQ Рік таксації Year of forest management planning in-

ventory survey  

 

PPGH Господарська частина Economic part Forests are divided into four main categories (protective, 

historical, recreational, commercial). Within these 

 
2 If forest operations (logging) partially took place within a forest polygon (stand) it can be subdivided into several homogeneous sub-units 
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CODE NAME UKR Name ENG Definition/description of attribute 

categories more detailed classification can be applied (i.g., 

forest-park zone of cities green belts) 

 

М05 - лісогосподарські характеристики – General information on forest sub-stand by species 

KALG Лісогосподарське 

підприємство 

State forest enterprise  

Sub-stand address 

KAIG Лісництво Forest district 

KAWN Квартал Forest block 

KAVN Виділ Forest polygon (stand) 

KARN Підвиділ Forest sub-polygon (sub-stand) 

KAPL Головна порода Main species  

KAB_ Клас бонітету Site index  Defined by height in a certain age 

KATL Тип лісу Forest type Example B2-OakPine 

KATU Тип лісорослинних умов Forest site conditions Example B2 

KAVE Ознака можливих для 

експлуатації лісів 

Sign of possible forest exploitation Explanation of possible forest exploitation: Related to PPGH. 

Indicates whether logging is allowed 

KAHS Господарська секція Economic section Synthetic category that combines stands that have similar 

composition, origin, productivity, harvesting age etc. Can 

be disconnected spatially. 

KAGV Група віку Age group (young, middle-aged ..)  

KAUV Код віку рубки Harvesting age (code) Age for a final harvest: pine - >80 in commercial forests ... = 

rotation period 

KACO Селекційна категорія Breeding category Reasonable or not for collecting seeds 

KA3P Цільова порода Target breed It related with KAHS. Forest crops can have different species 

composition from optimal within KAHS. So, it must be regu-

lated during thinning. 
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CODE NAME UKR Name ENG Definition/description of attribute 

For example, birch can dominated over pine at age of 10-

15 years, however crops were planted to grow pine forest 

by age of harvesting. Pine is target species 

OBLA Адміністративна область Administrative oblast of Ukraine  

KAPP Сумарна повнота 1+2+3 ярусів Total relative stocking  (1+2+3 layers) Relative stocking as a measure of stand volume in compari-

son to a yield table (fully stocked stands) 

KAMP Сумарний запас 1+2+3 ярусів Total volume  (1+2+3 layers)  

KAMZ Середня зміна запасу Annual increment  

 

М10 - розподіл за ярусами (підріст, підлісок) – Forest stand information by layers 

KALG Лісогосподарське 

підприємство 

State forest enterprise  

KAIG Лісництво Forest district  

KAWN Квартал Forest block (compartment)  

KAVN Виділ Forest polygon (stand)  

KARN Підвиділ Forest sub-polygon (sub-stand)  

KAJN Порядковий номер ярусу Layer number #  

KAJA Ярус Layer name  

KAP_ Повнота ярусу Relative stocking  Relative stocking using BA in comparison to a fully stocked 

stand defined in a yield table  

KAPR Приживлюваність незімкнутих 

лісових культур 

Forest crops survival Percentage of seedlings that survive during one vegetation 

cycle after crop planting 

KAMG Запас на 1 га Volume in m³/ha  

KAMJ Запас ярусу на виділі Volume in m³  

 

М10А - таксаційна характеристика по породно – Forest stand information by species 
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CODE NAME UKR Name ENG Definition/description of attribute 

KALG Лісогосподарське 

підприємство 

State forest enterprise  

KAIG Лісництво Forest district  

KAWN Квартал Forest block (compartment)  

KAVN Виділ Forest polygon (stand)  

KARN Підвиділ Forest sub-polygon (sub-stand)  

KAJA Ярус Layer  

KASN Порядковий номер деревної 

породи 

Tree species number  

KASS Коефіцієнт складу Species abundance (in % of BA)  

KASP Деревна порода Tree species  

KAA_ Вік Age (mean age)  

KAH_ Висота Height (mean height (m))  

KAD_ Діаметр Diameter (mean DBH (cm))  

KAND Відсоток ділових стовбурів Percentage of commercial trees Commercial trees: BA per commercial species is measured 

using relascope in pre-mature, mature and overmature 

stands. For young and middle-aged forest, relative stocking 

can be estimated visually. 

KANT Кількість підросту Number of seedlings/trees N of trees per ha 

KAPH Походження Origin  

KAGS Сума площі перерізів Basal Area (BA)  

 

in m2/ha . The field  KAGS in most cases is empty. More reli-

able data on abundance would be KAMG  - volume for 

stand layer. Then, species volume can be estimated using 

KAMG and KASS. Generally, there is no BA but relative 

stocking instead. 

KAMQ Запас деревної породи на 

виділі 

Volume within forest polygon Volume of a tree species in a forest stand or sub-stand 
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